4399卡布仙踪冰雪城堡是【龙骨冰原】的地图之一。
想要前往冰雪城堡,您可以在大地图上找到【龙骨冰原】:
点击【龙骨冰原】后可以看到龙骨冰原中的所有场景,然后点击我们需要寻找的【冰雪城堡】就可以传送到啦。
此文若说不清Epoll原理,那就过来掐死我
从事服务端开发,少不了要接触 *** 编程。
Epoll 作为 Linux 下高性能 *** 服务器的必备技术至关重要,Nginx、Redis、Sky *** 和大部分游戏服务器都使用到这一多路复用技术。
Epoll 很重要,但是 Epoll 与 Select 的区别是什么呢?Epoll 高效的原因是什么?
网上虽然也有不少讲解 Epoll 的文章,但要么是过于浅显,或者陷入源码解析,很少能有通俗易懂的。
笔者于是决定编写此文,让缺乏专业背景知识的读者也能够明白 Epoll 的原理。
本文核心思想是:要让读者清晰明白 Epoll 为什么性能好。
文章会从网卡接收数据的流程讲起,串联起 CPU 中断、操作系统进程调度等知识;再一步步分析阻塞接收数据、Select 到 Epoll 的进化过程;最后探究 Epoll 的实现细节。
从网卡接收数据说起
下边是一个典型的计算机结构图,计算机由 CPU、存储器(内存)与 *** 接口等部件组成,了解 Epoll 本质的之一步,要从硬件的角度看计算机怎样接收 *** 数据。
计算机结构图(图片来源:Linux 内核完全注释之微型计算机组成结构)
下图展示了网卡接收数据的过程:
在 1 阶段,网卡收到网线传来的数据。
经过 2 阶段的硬件电路的传输。
最终 3 阶段将数据写入到内存中的某个地址上。
这个过程涉及到 DMA 传输、IO 通路选择等硬件有关的知识,但我们只需知道:网卡会把接收到的数据写入内存。
网卡接收数据的过程
通过硬件传输,网卡接收的数据存放到内存中,操作系统就可以去读取它们。
如何知道接收了数据?
了解 Epoll 本质的第二步,要从 CPU 的角度来看数据接收。
理解这个问题,要先了解一个概念:中断。
计算机执行程序时,会有优先级的需求。
比如,当计算机收到断电信号时,它应立即去保存数据,保存数据的程序具有较高的优先级(电容可以保存少许电量,供 CPU 运行很短的一小段时间)。
一般而言,由硬件产生的信号需要 CPU 立马做出回应,不然数据可能就丢失了,所以它的优先级很高。
CPU 理应中断掉正在执行的程序,去做出响应;当 CPU 完成对硬件的响应后,再重新执行用户程序。
中断的过程如下图,它和函数调用差不多,只不过函数调用是事先定好位置,而中断的位置由“信号”决定。
中断程序调用
以键盘为例,当用户按下键盘某个按键时,键盘会给 CPU 的中断引脚发出一个高电平,CPU 能够捕获这个信号,然后执行键盘中断程序。
下图展示了各种硬件通过中断与 CPU 交互的过程:
CPU 中断(图片来源: *** .pku.edu. *** )
现在可以回答“如何知道接收了数据?”这个问题了:当网卡把数据写入到内存后,网卡向 CPU 发出一个中断信号,操作系统便能得知有新数据到来,再通过网卡中断程序去处理数据。
进程阻塞为什么不占用 CPU 资源?
了解 Epoll 本质的第三步,要从操作系统进程调度的角度来看数据接收。
阻塞是进程调度的关键一环,指的是进程在等待某事件(如接收到 *** 数据)发生之前的等待状态,Recv、Select 和 Epoll 都是阻塞 *** 。
下边分析一下进程阻塞为什么不占用 CPU 资源?为简单起见,我们从普通的 Recv 接收开始分析,先看看下面代码:
//创建socket int s = socket(AF_INET, SOCK_STREAM, 0); //绑定 bind(s, ...) //监听 listen(s, ...) //接受客户端连接 int c = accept(s, ...) //接收客户端数据 recv(c, ...); //将数据打印出来 printf(...)
这是一段最基础的 *** 编程代码,先新建 Socket 对象,依次调用 Bind、Listen 与 Accept,最后调用 Recv 接收数据。
Recv 是个阻塞 *** ,当程序运行到 Recv 时,它会一直等待,直到接收到数据才往下执行。
那么阻塞的原理是什么?
工作队列
操作系统为了支持多任务,实现了进程调度的功能,会把进程分为“运行”和“等待”等几种状态。
运行状态是进程获得 CPU 使用权,正在执行代码的状态;等待状态是阻塞状态,比如上述程序运行到 Recv 时,程序会从运行状态变为等待状态,接收到数据后又变回运行状态。
操作系统会分时执行各个运行状态的进程,由于速度很快,看上去就像是同时执行多个任务。
下图的计算机中运行着 A、B 与 C 三个进程,其中进程 A 执行着上述基础 *** 程序,一开始,这 3 个进程都 *** 作系统的工作队列所引用,处于运行状态,会分时执行。
工作队列中有 A、B 和 C 三个进程
等待队列
当进程 A 执行到创建 Socket 的语句时,操作系统会创建一个由文件系统管理的 Socket 对象(如下图)。
创建 Socket
这个 Socket 对象包含了发送缓冲区、接收缓冲区与等待队列等成员。
等待队列是个非常重要的结构,它指向所有需要等待该 Socket 事件的进程。
当程序执行到 Recv 时,操作系统会将进程 A 从工作队列移动到该 Socket 的等待队列中(如下图)。
Socket 的等待队列
由于工作队列只剩下了进程 B 和 C,依据进程调度,CPU 会轮流执行这两个进程的程序,不会执行进程 A 的程序。
所以进程 A 被阻塞,不会往下执行代码,也不会占用 CPU 资源。
注:操作系统添加等待队列只是添加了对这个“等待中”进程的引用,以便在接收到数据时获取进程对象、将其唤醒,而非直接将进程管理纳入自己之下。
上图为了方便说明,直接将进程挂到等待队列之下。
唤醒进程
当 Socket 接收到数据后,操作系统将该 Socket 等待队列上的进程重新放回到工作队列,该进程变成运行状态,继续执行代码。
同时由于 Socket 的接收缓冲区已经有了数据,Recv 可以返回接收到的数据。
内核接收 *** 数据全过程
这一步,贯穿网卡、中断与进程调度的知识,叙述阻塞 Recv 下,内核接收数据的全过程。
内核接收数据全过程
如上图所示,进程在 Recv 阻塞期间:
计算机收到了对端传送的数据(步骤 ①)数据经由网卡传送到内存(步骤 ②)然后网卡通过中断信号通知 CPU 有数据到达,CPU 执行中断程序(步骤 ③)
此处的中断程序主要有两项功能,先将 *** 数据写入到对应 Socket 的接收缓冲区里面(步骤 ④),再唤醒进程 A(步骤 ⑤),重新将进程 A 放入工作队列中。
唤醒进程的过程如下图所示:
唤醒进程
以上是内核接收数据全过程,这里我们可能会思考两个问题:
操作系统如何知道 *** 数据对应于哪个 Socket?如何同时监视多个 Socket 的数据?
之一个问题:因为一个 Socket 对应着一个端口号,而 *** 数据包中包含了 IP 和端口的信息,内核可以通过端口号找到对应的 Socket。
当然,为了提高处理速度,操作系统会维护端口号到 Socket 的索引结构,以快速读取。
第二个问题是多路复用的重中之重,也正是本文后半部分的重点。
同时监视多个 Socket 的简单 ***
服务端需要管理多个客户端连接,而 Recv 只能监视单个 Socket,这种矛盾下,人们开始寻找监视多个 Socket 的 *** 。
Epoll 的要义就是高效地监视多个 Socket。
从历史发展角度看,必然先出现一种不太高效的 *** ,人们再加以改进,正如 Select 之于 Epoll。
先理解不太高效的 Select,才能够更好地理解 Epoll 的本质。
假如能够预先传入一个 Socket 列表,如果列表中的 Socket 都没有数据,挂起进程,直到有一个 Socket 收到数据,唤醒进程。
这种 *** 很直接,也是 Select 的设计思想。
为方便理解,我们先复习 Select 的用法。
在下边的代码中,先准备一个数组 FDS,让 FDS 存放着所有需要监视的 Socket。
然后调用 Select,如果 FDS 中的所有 Socket 都没有数据,Select 会阻塞,直到有一个 Socket 接收到数据,Select 返回,唤醒进程。
用户可以遍历 FDS,通过 FD_ISSET 判断具体哪个 Socket 收到数据,然后做出处理。
int s = socket(AF_INET, SOCK_STREAM, 0); bind(s, ...) listen(s, ...) int fds[] = 存放需要监听的socket while(1){ int n = select(..., fds, ...) for(int i=0; i < fds.count; i++){ if(FD_ISSET(fds[i], ...)){ //fds[i]的数据处理 } } }
Select 的流程
Select 的实现思路很直接,假如程序同时监视如下图的 Sock1、Sock2 和 Sock3 三个 Socket,那么在调用 Select 之后,操作系统把进程 A 分别加入这三个 Socket 的等待队列中。
操作系统把进程 A 分别加入这三个 Socket 的等待队列中
当任何一个 Socket 收到数据后,中断程序将唤起进程。
下图展示了 Sock2 接收到了数据的处理流程:
Sock2 接收到了数据,中断程序唤起进程 A
注:Recv 和 Select 的中断回调可以设置成不同的内容。
所谓唤起进程,就是将进程从所有的等待队列中移除,加入到工作队列里面,如下图所示:
将进程 A 从所有等待队列中移除,再加入到工作队列里面
经由这些步骤,当进程 A 被唤醒后,它知道至少有一个 Socket 接收了数据。
程序只需遍历一遍 Socket 列表,就可以得到就绪的 Socket。
这种简单方式行之有效,在几乎所有操作系统都有对应的实现。
但是简单的 *** 往往有缺点,主要是:
每次调用 Select 都需要将进程加入到所有监视 Socket 的等待队列,每次唤醒都需要从每个队列中移除。
这里涉及了两次遍历,而且每次都要将整个 FDS 列表传递给内核,有一定的开销。
正是因为遍历操作开销大,出于效率的考量,才会规定 Select 的更大监视数量,默认只能监视 1024 个 Socket。
进程被唤醒后,程序并不知道哪些 Socket 收到数据,还需要遍历一次。
那么,有没有减少遍历的 *** ?有没有保存就绪 Socket 的 *** ?这两个问题便是 Epoll 技术要解决的。
补充说明:本节只解释了 Select 的一种情形。
当程序调用 Select 时,内核会先遍历一遍 Socket,如果有一个以上的 Socket 接收缓冲区有数据,那么 Select 直接返回,不会阻塞。
这也是为什么 Select 的返回值有可能大于 1 的原因之一。
如果没有 Socket 有数据,进程才会阻塞。
Epoll 的设计思路
Epoll 是在 Select 出现 N 多年后才被发明的,是 Select 和 Poll(Poll 和 Select 基本一样,有少量改进)的增强版本。
Epoll 通过以下一些措施来改进效率:
措施一:功能分离
Select 低效的原因之一是将“维护等待队列”和“阻塞进程”两个步骤合二为一。
相比 Select,Epoll 拆分了功能
如上图所示,每次调用 Select 都需要这两步操作,然而大多数应用场景中,需要监视的 Socket 相对固定,并不需要每次都修改。
Epoll 将这两个操作分开,先用 epoll_ctl 维护等待队列,再调用 epoll_wait 阻塞进程。
显而易见地,效率就能得到提升。
为方便理解后续的内容,我们先了解一下 Epoll 的用法。
如下的代码中,先用 epoll_create 创建一个 Epoll 对象 Epfd,再通过 epoll_ctl 将需要监视的 Socket 添加到 Epfd 中,最后调用 epoll_wait 等待数据:
int s = socket(AF_INET, SOCK_STREAM, 0); bind(s, ...) listen(s, ...) int epfd = epoll_create(...); epoll_ctl(epfd, ...); //将所有需要监听的socket添加到epfd中 while(1){ int n = epoll_wait(...) for(接收到数据的socket){ //处理 } }
功能分离,使得 Epoll 有了优化的可能。
措施二:就绪列表
Select 低效的另一个原因在于程序不知道哪些 Socket 收到数据,只能一个个遍历。
如果内核维护一个“就绪列表”,引用收到数据的 Socket,就能避免遍历。
就绪列表示意图
如上图所示,计算机共有三个 Socket,收到数据的 Sock2 和 Sock3 被就绪列表 Rdlist 所引用。
当进程被唤醒后,只要获取 Rdlist 的内容,就能够知道哪些 Socket 收到数据。
Epoll 的原理与工作流程
本节会以示例和图表来讲解 Epoll 的原理和工作流程。
创建 Epoll 对象
如下图所示,当某个进程调用 epoll_create *** 时,内核会创建一个 eventpoll 对象(也就是程序中 Epfd 所代表的对象)。
内核创建 eventpoll 对象
eventpoll 对象也是文件系统中的一员,和 Socket 一样,它也会有等待队列。
创建一个代表该 Epoll 的 eventpoll 对象是必须的,因为内核要维护“就绪列表”等数据,“就绪列表”可以作为 eventpoll 的成员。
维护监视列表
创建 Epoll 对象后,可以用 epoll_ctl 添加或删除所要监听的 Socket。
以添加 Socket 为例。
添加所要监听的 Socket
如上图,如果通过 epoll_ctl 添加 Sock1、Sock2 和 Sock3 的监视,内核会将 eventpoll 添加到这三个 Socket 的等待队列中。
当 Socket 收到数据后,中断程序会操作 eventpoll 对象,而不是直接操作进程。
接收数据
当 Socket 收到数据后,中断程序会给 eventpoll 的“就绪列表”添加 Socket 引用。
给就绪列表添加引用
如上图展示的是 Sock2 和 Sock3 收到数据后,中断程序让 Rdlist 引用这两个 Socket。
eventpoll 对象相当于 Socket 和进程之间的中介,Socket 的数据接收并不直接影响进程,而是通过改变 eventpoll 的就绪列表来改变进程状态。
当程序执行到 epoll_wait 时,如果 Rdlist 已经引用了 Socket,那么 epoll_wait 直接返回,如果 Rdlist 为空,阻塞进程。
阻塞和唤醒进程
假设计算机中正在运行进程 A 和进程 B,在某时刻进程 A 运行到了 epoll_wait 语句。
epoll_wait 阻塞进程
如上图所示,内核会将进程 A 放入 eventpoll 的等待队列中,阻塞进程。
当 Socket 接收到数据,中断程序一方面修改 Rdlist,另一方面唤醒 eventpoll 等待队列中的进程,进程 A 再次进入运行状态(如下图)。
Epoll 唤醒进程
也因为 Rdlist 的存在,进程 A 可以知道哪些 Socket 发生了变化。
Epoll 的实现细节
至此,相信读者对 Epoll 的本质已经有一定的了解。
但我们还需要知道 eventpoll 的数据结构是什么样子?
此外,就绪队列应该使用什么数据结构?eventpoll 应使用什么数据结构来管理通过 epoll_ctl 添加或删除的 Socket?
Epoll 原理示意图,图片来源:《深入理解 Nginx:模块开发与架构解析(第二版)》,陶辉
如上图所示,eventpoll 包含了 Lock、MTX、WQ(等待队列)与 Rdlist 等成员,其中 Rdlist 和 RBR 是我们所关心的。
就绪列表的数据结构
就绪列表引用着就绪的 Socket,所以它应能够快速的插入数据。
程序可能随时调用 epoll_ctl 添加监视 Socket,也可能随时删除。
当删除时,若该 Socket 已经存放在就绪列表中,它也应该被移除。
所以就绪列表应是一种能够快速插入和删除的数据结构。
双向链表就是这样一种数据结构,Epoll 使用双向链表来实现就绪队列(对应上图的 Rdlist)。
索引结构
既然 Epoll 将“维护监视队列”和“进程阻塞”分离,也意味着需要有个数据结构来保存监视的 Socket,至少要方便地添加和移除,还要便于手机游戏与 AI 技术等领域,并以第三方视角记录普通开发者的心路历程。
还没有评论,来说两句吧...